Lecture 12.5

Basics of Sets and Functions

What's a Set?

 $\mathbb{Q}^+ = \{x \in \mathbb{R} \mid x =$ *p q*

Examples:

 $V = \{a, e, i, o, u\}$, is the set of vowels in English alphabet.

 $E = \{2{,}4{,}6{,}8{,}10\}$, is the set of positive even integers ≤ 10.5

 $E = \{x \mid x \text{ is a positive even integer } \leq 10\}$

Note: It is not necessary that members of a set should have a common property. For instance, {99, Bob, Jupiter} is a valid set.

DEfn: A set is an unordered collection of distinct objects, called elements or members of the set. $a \in A$ denotes that *a* is a member of *A*, and $a \notin A$ denotes that *a* is not a member of *A*.

More about Sets

if *A* and *B* are sets, then $A = B$ if and only if $\forall x(x \in A \iff x \in B)$. ${1,2,3,3,2,2} = {1,2,3}.$

- **Definition:** Two sets are **equal** if and only if they have the **same elements**. In other words,
- **Example:** $\{1,2,3\} = \{1,3,2\}$ because they contain the same elements and the order does not matter. It also does not matter whether one element is listed more than once, therefore,

- Definition: A set that contains no elements is called the empty set and denoted by Ø.
- **Note:** Do not confuse Ø with $\{\emptyset\}$, Ø is the empty set and $\{\emptyset\}$ is a singleton set.

A set with just one element is called a singleton set.

Subsets and Cardinality

Defn: The set A is a subset of B iff every element of A is also an element of B. $A \subseteq B$ denotes that A is a subset of B .

Proving $A \subseteq B$, $A \nsubseteq B$, $A = B$:

- To prove $A \subseteq B$, show that if $x \in A$, then $x \in B$.
- To prove $A \nsubseteq B$, find an x in A such that $x \notin B$.
- To prove $A = B$, show that $A \subseteq B$ and $B \subseteq A$.

Defn: Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and that n is the **cardinality** of S . The cardinality of S is denoted by $|S|$. A set is said to be **infinite** if it is not finite.

Ordered Tuple

- **Defn:** The ordered *n*-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, $...,$ and a_n as its n th element. Ordered 2-tuples are called ordered pairs.
- corresponding pair of their elements are equal, i.e., $a_i = b_i$ for $i = 1, 2, ..., n$.

 $\textsf{Two ordered } n\text{-tuples, say } (a_1, a_2, ..., a_n) \text{ and } (b_1, b_2, ..., b_n)$, are **equal** if and only if each

Cartesian Product

Defn: Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b) , where $a \in A$ and $b \in B$. Hence, $A \times B = \{(a, b) \mid a \in A \land b \in B\}$

Example: Let $A = \{a, b\}$ and $B = \{1, 2, 3\}$. Then $A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}\$ $B \times A = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}\$

Definition: The cartesian product of the sets $A_1, A_2, ..., A_n$, denoted by $A_1 \times A_2 \times ... \times A_n$ is the set of ordered *n*-tuples $(a_1, a_2, ..., a_n)$, where a_i belongs to A_i , for $i = 1,2,...,n$.

Set Operations

Let *A* and *B* be two sets. Then the following operation can be defined on them, *A* and *B* are disjoint, if $A \cap B = \emptyset$. the complement of A with respect to U , i.e., $U - A$.

-
- **Union:** Denoted by $A \cup B$, is the set of all the elements that are either in A or B , or in both.
- Intersection: Denoted by $A \cap B$, is the set of all the elements that are in both A and B.
- Difference: Denoted by $A B$, is the set of all the elements that are in A but not in B .
- **Complement:** Let *U* be the universal set. The complement of the set *A*, denoted by *A*, is
- **Note:** Union and intersection of more than two sets defined as the natural extension of

union and intersection of two sets.

Set Identities

Functions

Defn: Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A . We write $f(a) = b$ if b is the unique element of B assigned by the function f to the element a of A . If f is a function from A to B , we write $f: A \rightarrow B$. A is called the **domain** of f and B is called the **image** or range of f .

One-to-One Functions

 $a = b$ for all a and b in the domain of f .

Defn: A function f is said to be one-to-one or an injection, if and only if $f(a) = f(b)$ implies that

Definition: A function f is said to be onto or a surjection, if and only if for every element

Onto Functions

 $b \in B$ there is an element $a \in A$ with $f(a) = b$.

Bijective Functions

Defn: A function *f* is said to be a bijection, if and only if it is both one-to-one and onto.

A bijection Not a bijection

Inverse Function and Composition of Functions

 $i.e., f^{-1}(b) = a.$

Defn: Let g be a function from A to B and let f be a function from B to C . The ϵ composition of the functions f and g , denoted by $f\circ g$ for all $a\in A$, is defined by $(f ∘ g)(a) = f(g(a))$

Defn: Let f be a bijection from A to B . The inverse function of f , denoted by f^{-1} , is the function that assigns to an element b of B the unique element a in A such that $f(a) = b$, \vdots

