Lecture 12.5

Basics of Sets and Functions

What's a Set?

Examples:

Note: It is not necessary that members of a set should have a common property. For instance, {99, Bob, Jupiter} is a valid set.

DEfn: A set is an unordered collection of distinct objects, called elements or members of the set. $a \in A$ denotes that a is a member of A, and $a \notin A$ denotes that a is not a member of A.

More about Sets

if A and B are sets, then A = B if and only if $\forall x (x \in A \iff x \in B)$. $\{1,2,3,3,2,2\} = \{1,2,3\}.$

Definition: A set that contains no elements is called the empty set and denoted by \emptyset . A set with just one element is called a singleton set.

- **Definition:** Two sets are equal if and only if they have the same elements. In other words,
- **Example:** $\{1,2,3\} = \{1,3,2\}$ because they contain the same elements and the order does not matter. It also does not matter whether one element is listed more than once, therefore,

- **Note:** Do not confuse \emptyset with $\{\emptyset\}$, \emptyset is the empty set and $\{\emptyset\}$ is a singleton set.

Subsets and Cardinality

Defn: The set A is a subset of B iff every element of A is also an element of B. $A \subseteq B$ denotes that A is a subset of B.

Proving $A \subseteq B, A \nsubseteq B, A = B$:

- To prove $A \subseteq B$, show that if $x \in A$, then $x \in B$.
- To prove $A \not\subseteq B$, find an x in A such that $x \notin B$.
- To prove A = B, show that $A \subseteq B$ and $B \subseteq A$.

Defn: Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|. A set is said to be **infinite** if it is not finite.

Ordered Tuple

- **Defn:** The ordered *n*-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its *n*th element. Ordered 2-tuples are called ordered pairs.
- corresponding pair of their elements are equal, i.e., $a_i = b_i$ for i = 1, 2, ..., n.

Two ordered *n*-tuples, say (a_1, a_2, \dots, a_n) and (b_1, b_2, \dots, b_n) , are equal if and only if each

Cartesian Product

set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence, $A \times B = \{(a, b) \mid a \in A \land b \in B\}$

Example: Let $A = \{a, b\}$ and $B = \{1, 2, 3\}$. Then $A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}$ $B \times A = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$

Definition: The cartesian product of the sets A_1, A_2, \ldots, A_n , denoted by $A_1 \times A_2 \times \ldots \times A_n$, is the set of ordered *n*-tuples (a_1, a_2, \ldots, a_n) , where a_i belongs to A_i , for $i = 1, 2, \ldots, n$.

- **Defn:** Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the

Set Operations

Let A and B be two sets. Then the following operation can be defined on them, A and B are **disjoint**, if $A \cap B = \emptyset$. the complement of A with respect to U, i.e., U - A.

union and intersection of two sets.

- Union: Denoted by $A \cup B$, is the set of all the elements that are either in A or B, or in both.
- **Intersection:** Denoted by $A \cap B$, is the set of all the elements that are in both A and B.
- **Difference:** Denoted by A B, is the set of all the elements that are in A but not in B.
- **Complement:** Let U be the universal set. The complement of the set A, denoted by \overline{A} , is
- **Note:** Union and intersection of more than two sets defined as the natural extension of

Set Identities

Identity Laws:AA	$\cap U = A$ $\cup \emptyset = A$	De Morgan's Laws:	$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$
Domination Laws	$A \cup U = U$ $A \cap \emptyset = \emptyset$	Complement Laws:	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$
Idempotent Laws	$A \cup A = A$ $A \cap A = A$	Commutative Laws:	$A \cup B = B \cup A$ $A \cap B = B \cap A$
Absorption Laws:	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Associative Laws:	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
Complementation	Law: $\overline{(\overline{A})} = A$	Distributive Laws:	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Functions

Defn: Let *A* and *B* be nonempty sets. A function *f* from *A* to *B* is an assignment of exactly one element of *B* to each element of *A*. We write f(a) = b if *b* is the unique element of *B* assigned by the function *f* to the element *a* of *A*. If *f* is a function from *A* to *B*, we write $f: A \rightarrow B$. *A* is called the domain of *f* and *B* is called the image or range of *f*.

One-to-One Functions

a = b for all a and b in the domain of f.

Defn: A function f is said to be one-to-one or an injection, if and only if f(a) = f(b) implies that

Not an injection

Onto Functions

 $b \in B$ there is an element $a \in A$ with f(a) = b.

Definition: A function f is said to be **onto** or a **surjection**, if and only if for every element

Not a surjection

Bijective Functions

A bijection

Defn: A function f is said to be a **bijection**, if and only if it is both **one-to-one** and **onto**.

Not a bijection

Inverse Function and Composition of Functions

i.e, $f^{-1}(b) = a$.

Defn: Let g be a function from A to B and let f be a function from B to C. The **composition** of the functions f and g, denoted by $f \circ g$ for all $a \in A$, is defined by $(f \circ g)(a) = f(g(a))$

Defn: Let f be a bijection from A to B. The inverse function of f, denoted by f^{-1} , is the function that assigns to an element b of B the unique element a in A such that f(a) = b,

